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SUMMARY

Sequential activation of neurons has been observed during various behavioral and cognitive processes, but
the underlying circuit mechanisms remain poorly understood. Here, we investigate premotor sequences in
HVC (proper name) of the adult zebra finch forebrain that are central to the performance of the temporally pre-
cise courtship song. We use high-density silicon probes to measure song-related population activity, and we
compare these observations with predictions from a range of network models. Our results support a circuit
architecture in which heterogeneous delays between sequentially active neurons shape the spatiotemporal
patterns of HVC premotor neuron activity. We gauge the impact of several delay sources, and we find the pri-
mary contributor to be slow conduction through axonal collaterals within HVC, which typically adds between
1 and 7.5 ms for each link within the sequence. Thus, local axonal ‘‘delay lines’’ can play an important role in
determining the dynamical repertoire of neural circuits.

INTRODUCTION

Sequential neural activity in local brain areas is thought to play a
critical role in behaviors such as motor control (Luczak et al.,
2015; Mauk and Buonomano, 2004; Peters et al., 2014; Prut
et al., 1998), navigation (Foster and Wilson, 2007; Pastalkova
et al., 2008), and decision-making (Mello et al., 2015; Schmitt
et al., 2017). A variety of mechanisms have been proposed to un-
derlie the generation of neural sequences (Diesmann et al., 1999;
Fiete et al., 2010; Goldman, 2009; Hahnloser et al., 2002; Klein-
feld and Sompolinsky, 1988; Laje and Buonomano, 2013; Rajan
et al., 2016), but experimental tests of these network models
have been stymied by the scarcity of datasets that relate
behavior, network function, and circuit structure. The zebra finch
songsystem is ideally suited for studying themechanistic basis of
neural sequence generation. Each adult male zebra finch pro-
duces a courtship song that is nearly identical from one rendition
to the next (Glaze and Troyer, 2006), consisting of!3–7 discrete
vocal elements known as ‘‘syllables.’’ Many lines of evidence
have suggested that neural activity controlling the moment-to-
moment timing of song production is primarily mediated by a sin-
gle brain region, called HVC (proper name) (Hahnloser et al.,
2002; Long and Fee, 2008; Nottebohm et al., 1976; Vu et al.,
1994). A population of HVC(RA) projection neurons sends these
premotor commands to a primary motor cortical site (i.e., the
robust nucleus of the arcopallium, or RA) which in turn drivesmo-
toneurons (Wild, 1993) controlling the millisecond-resolution

timing of muscle commands that directly impact behavioral
output (Adam and Elemans, 2020).
The HVC premotor sequence is composed of roughly 20,000

HVC(RA) neurons, each producing high-frequency bursts of ac-
tion potentials (!4–5 spikes/burst, !5–10 ms duration) at a sin-
glemoment during the song (Hahnloser et al., 2002; Kozhevnikov
and Fee, 2007). At a population level, different HVC(RA) neurons
are often active at different moments of the song, whose length
typically ranges from!0.5–1.0 s. Several models have been pro-
posed to explain HVC sequence generation (Cannon et al., 2015;
Galvis et al., 2018; Gibb et al., 2009; Hamaguchi et al., 2016; Jin
et al., 2007; Long et al., 2010; Pehlevan et al., 2018). A feature at
the heart of many of these models is local connectivity between
HVC(RA) neurons capable of propagating activity from earlier to
later steps in the song sequence. Previous work had demon-
strated the existence of these interconnections (Kornfeld et al.,
2017; Kosche et al., 2015; Mooney and Prather, 2005). However,
the size of HVC(RA)-HVC(RA) synapses appears to be somewhat
restricted (Kornfeld et al., 2017), leading to unitary postsynaptic
potentials of !2 mV (Mooney and Prather, 2005), considerably
smaller than the depolarization observed during a song-related
burst (!10–15 mV) (Long et al., 2010), suggesting that multiple
convergent presynaptic inputs are required. The exact identity
of these presynaptic partners (i.e., specific timing, spatial loca-
tion) remains unknown, due in part to the technical difficulties
in measuring synaptic connectivity between sequentially active
neurons during behavior.
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Asanalternativemeansofaddressing themechanismsof song-
related sequence generation, we leverage detailed measure-
ments of circuit, synaptic, and biophysical properties of zebra
finchHVCneurons (Benezra et al., 2018; Kornfeld et al., 2017; Ko-
sche et al., 2015; Long et al., 2010; Mooney and Prather, 2005) to
develop network models of HVC(RA) sequence generation where
theonly freeparameter is theconnectivity of presynapticpartners.
These models predict millisecond-timescale differences in HVC
population activity that had eluded existing experimental mea-
surements. Specifically, previous electrophysiological studies
had been restricted to measuring responses from individual pro-
jection neurons (Hahnloser et al., 2002; Long et al., 2010) or occa-
sionally pairs (Lynch et al., 2016), forcing investigators to retro-
spectively construct an inferred sequence by relating each
measured time point to the produced song. Such an approach
can address questions of representation within HVC (Amador
et al., 2013; Lynch et al., 2016), but it does not allow for the direct
observation of neural sequences that unfold during singing.

We overcome these obstacles by using high-density silicon
probes to measure song-related sequential activity of up to 70
simultaneously recorded projection neurons and find that our

Figure 1. Measuring and Modeling HVC
Premotor Sequences
(A) Top: schematic of a high-density silicon probe

placed within HVC of the song production

pathway in the zebra finch. Bottom: location of

simultaneously recorded HVC(RA) neurons

(colored dots) on a four-shank silicon probe.

(B) Spectrogram of a song motif (letters: individual

syllables) and spike raster plots of 20 simulta-

neously recorded HVC(RA) neurons. Shaded re-

gions represent syllable times.

(C) Raster plot of HVC(RA) neurons active during

syllable B for five example song trials.

(D) Inputs from individual presynaptic HVC(RA)

neurons are not likely to be strong enough to drive

burst spiking in a postsynaptic neuron; conver-

gence of multiple synaptic inputs is required.

(E and F) Left: presynaptic neurons could be active

synchronously (E) or asynchronously (F), as shown

in a simplified schematic. Center: spike timing of

170 presynaptic neurons in two biologically

detailed models of the HVC(RA) network. Right:

simulated network activity of 750HVC(RA) neurons.

See also Figures S1 and S2.

data strongly favor a network configura-
tion in which axonal conduction delays
between sequentially active cells help to
distribute the timing of premotor bursts
throughout the duration of the song. We
then use fluorescence imaging during
singing to demonstrate the impact of
these delays on the spatial patterns of
activated neurons within HVC. To explore
the universality of this mechanism, we
estimated the distribution of axonal con-
duction delays in rodent layer 4 (L4)
neocortical neurons and found them to

be consistent with those we describe in the songbird. Hence,
axonal conduction delaysmay play a key role in shaping network
activity across a range of local brain circuits.

RESULTS

Measurement and Modeling of Network Sequences
in HVC
We first sought to determine the fine temporal structure of song-
related sequences within HVC using high-density silicon probes
(Figure 1A), which we used to monitor the spiking activity of 291
HVC projection neurons in 5 birds during song production. We
simultaneously recorded between 45 and 70 projection neurons
over observation periods lasting 1 to 4.5 h.Weusedantidromic re-
sponses and other electrophysiological features (Figure S1; STAR
Methods) to distinguish HVC(RA) neurons (n = 83) from those pro-
jecting to thebasal ganglia (HVC(X) neurons, n=208).Weobserved
stable sequences (11 to 20 HVC(RA) burst events per bird) that
could be clearly visualized in single trials (Figures 1B and 1C).
Previous manipulations of HVC activity during singing support

the idea that song-related sequences are sustained by local
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circuitry (Long and Fee, 2008; Vu et al., 1994). As discussed
above, most network models (Galvis et al., 2017; Long et al.,
2010; Pehlevan et al., 2018) suggest a functionally feedforward
architecture in which connected chains of neurons generate reli-
able sequential activity, and it is likely that convergent inputs
from multiple presynaptic partner neurons are required to drive
burst spiking during singing (Figure 1D). There are two categor-
ically different means of accomplishing this arrangement. In the
first, each HVC(RA) neuron is driven by a synchronously active
presynaptic population (Figure 1E). In the second, presynaptic
populations are active at a range of different times which are
accompanied bymatching delays that enable simultaneous inte-
gration at the postsynaptic neuron (Figure 1F).
To examine whether these connectivity schemes could result

in measurable differences in the population activity of HVC(RA)

neurons, we constructed two network models (Figure S2;
STAR Methods) constrained by previous experimental observa-
tions (Benezra et al., 2018; Kornfeld et al., 2017; Kosche et al.,
2015; Long et al., 2010; Mooney and Prather, 2005) and differing
only in the degree of synchrony of presynaptic neurons. Resul-
tant population activity patterns from these two arrangements
were categorically distinct: sequences in the ‘‘synchronous
model’’ (Figure 1E) consisted of a series of co-active groups of
neurons, while network activity in the ‘‘asynchronous model’’
(Figure 1F) was smoothly evolving in time. Because HVC deter-
mines motor timing within the zebra finch song production
pathway, each model suggests qualitatively different ‘‘popula-
tion clock’’ dynamics (Buonomano and Karmarkar, 2002; Paton
and Buonomano, 2018)—either with discrete ‘‘ticks’’ at a !6–
7 ms timescale (synchronous model) or with a higher resolution,
continuous timing signal throughout the behavior (asynchro-
nous model).

Using Population Recordings to Estimate HVC Network
Structure
To distinguish between synchronous and asynchronous network
activity, our measurements must be significantly more precise
than the relevant timescales of our model predictions (i.e., the in-
terburst interval of the synchronous model). One existing source
of temporal jitter is behavioral variability. Consistent with previ-
ous reports (Glaze and Troyer, 2006), the duration of zebra finch
songs in our dataset varied by 1.8% ± 0.4% across renditions
(Figure 2A, n = 5 birds, 12 to 47 song motif renditions per bird).
These variations were accompanied by correlated differences
in spike timing, where activity of neurons later in the sequence
was shifted in proportion to the change in overall song duration
(Figures 2B and 2C). To compensate for this source of variability,
we aligned neural sequences across different trials to each other
using linear transformations (STAR Methods). After alignment,
burst onset times were extremely precise (Figures 2D and 2E;
HVC(RA): 0.64 ± 0.29 ms; HVC(X): 0.72 ± 0.46 ms; median ± me-
dian absolute deviation). Therefore, our electrophysiological
measurements of HVC projection neuron activity have the tem-
poral precision to distinguish between the twomodels presented
above (Figures 1E and 1F).
Our next step was to leverage the submillisecond timing pre-

cision of our recordings to test specific predictions concerning
the relative timing of song-related burst firing: in the synchronous
model (Figure 1E), network activity should be periodic (i.e.,
occurring only in specific time steps), while the asynchronous
model (Figure 1F) predicts continuous coverage of activity
throughout the song. We examined cases in which multiple pro-
jection neurons were recorded during individual syllables, con-
sisting of 66 HVC(RA) and 216 HVC(X) total bursts. Burst events
within syllables did not exhibit any obvious regularity (Figures

Figure 2. Estimating HVC Network Activity with Submillisecond Precision
(A) Spike raster plots of HVC(RA) neurons from one bird. Each row represents a single rendition with the timing of syllables indicated with gray shading during

different song repetitions.

(B) Difference between burst times in individual songmotifs and the mean burst times for the spiking patterns shown in (A). Burst times in the same songmotif are

connected by lines.

(C) Standard deviation (SD) of burst times of HVC(RA) neurons as a function of burst time during song in five birds. The gray line represents the bird analyzed in (B).

(D) Top: burst times of the three neurons (indicated in A with arrowheads) after removing trial-to-trial variation in overall sequence speed. Bottom: histograms of

aligned burst onset times.

(E) Histogram of burst onset jitter (root mean squared error) for 39 HVC(RA) and 216 HVC(X) bursts recorded in five birds.

(F) Top: 10 HVC(RA) and 19 HVC(X) burst events occurring during a single syllable, sorted according to burst onset time (bold). Bottom: all burst onset times

occurring during this syllable (black, syllable onset/offset).

(G) All burst onset times included in this dataset (282 bursts – 66 HVC(RA) and 216 HVC(X), 22 syllables, 5 birds). Each row shows all bursts occurring during

individual syllables. The rowwith the arrowhead is featured in (F). Inset: power spectra of burst onset times for all projection neurons (top) and for HVC(RA) neurons

only (bottom). Thin lines, power spectra of individual birds (n = 5); thick lines, average across birds.

ll

Cell 183, 537–548, October 15, 2020 539

Article



2F and 2G), which would have been indicative of the synchro-
nous model. To detect the presence of any such periodic struc-
ture in population activity, we used a Fourier analysis to analyze
burst onset times for all HVC projection neurons as well as for
HVC(RA) neurons, considered separately (Figure 2G).

We formally tested existing network models by comparing the
relative timing of HVC projection neuron bursts (Figure 2) with
predictions generated from the proposed synchronous and
asynchronous circuit configurations (Figures 1E, 1F, 3A, and
3B). Importantly, we set the number of simulated burst times to
match our observations (i.e., 282 total HVC projection neuron
bursts in 22 syllables and 66 HVC(RA) bursts in 15 syllables) to
ensure that our dataset would be sufficient to distinguish be-
tween these models. The synchronous model predicted a peak
in the power spectrum at !170 Hz (Figures 3C and S3), corre-
sponding to an !6 ms interval between time steps (Figure 1E).
In contrast, the power spectrum predicted by the asynchronous
model, which generates a uniform coverage of bursts throughout
the song (Figure 1F), was flat within this frequency range (Fig-
ure 3D). When we compared these simulations with measured
burst times, we found that our dataset was strongly aligned
with the predictions of the asynchronous model (synchronous
model: p < 10"4 for HVC projection neurons and HVC(RA) only,
asynchronous model: p = 0.90 for HVC projection neurons and
p = 0.52 for HVC(RA) neurons, bootstrap, see STAR Methods).

The synchronous and asynchronous models represent only
two specific network configurations out of a large range of pos-
sibilities. To systematically explore the relationship between
burst transmission delays and circuit dynamics, we varied both
the mean (Figure 3E) and standard deviation (SD) (Figure 3F) of
our delay distribution over an order of magnitude. We then
generated a network model for each case and simulated a family
of burst times to compare with observed data, now restricting

our analysis tomeasured sequences of HVC(RA) neurons (Figures
2G, 3C, and 3D). When the delay distribution was narrow or the
mean delay was very short, simulated HVC sequences were
composed of bursts in discrete time steps. However, delay dis-
tributions exceeding a minimum mean and SD, led to smooth
simulated network sequences, as observed in HVC during
song (Figure 3G). This effect was robust to the presence of recur-
rent (i.e., non-feedforward) connections (Figures S4A and S4B)
aswell as the precise shape of the delay distribution (Figure S4C).
Thus, our simulations support the hypothesis that delays could
provide a robust mechanism for the formation of smooth se-
quences, as observed within HVC during song.

Biophysical Origin of HVC Circuit Delays
What neural processes can create such delays? For instance,
the time between the arrival of a spike at the axon terminal to
the start of the postsynaptic potential is typically exceptionally
short (!150 ms) (Sabatini and Regehr, 1996) and therefore un-
likely to explain the smooth network sequences we observe.
On the other hand, delays related to postsynaptic integration
and axonal conduction velocity have the potential to be signifi-
cant. Here, we consider each of these parameters as they apply
to HVC network function.
Postsynaptic integration can generate heterogeneous delays

in two primary ways. First, synaptic inputs are spatially sum-
mated from separate regions of the dendritic arbor allowing for
the possibility that distal and proximal inputs can arrive at the
soma at different times. Such spatial summation is unlikely to
affect HVC(RA) neurons, however, as their dendrites are short
(<100 mm) and radiate from the somata equally in all directions,
leading to a spherical shape of the dendritic tree (Benezra
et al., 2018) and therefore limiting delay variability. Second,
neuronal time constants, which affect the timescale over which

Figure 3. Comparison of Network Model Predictions to Recorded Data
(A and B) Simulated burst onset times for the synchronous (A) and asynchronous (B) models. Insets indicate the distributions of delays used.

(C and D) Power spectra used tomeasure the presence of periodic activity patterns in synchronous (C) and asynchronous (D)models and in the experimental data

(from Figure 2G). Shaded area: ±3 SD.

(E and F) Top: three distributions of delays when varying the mean delay (SD fixed at 1.25 ms) (E) or the delay SD (mean fixed at 3.5 ms) (F). Center: power spectra

of burst onset times for network models with above delay distributions. Shaded area: ±3 SD. Bottom: difference in peak power in the frequency band from 75–

200 Hz for the models based on the delay distributions and the observed HVC(RA) burst times (dashed line). Error bars: 2.5th and 97.5th percentiles.

(G) Two-dimensional parameter grid of network synchrony with different mean and SD values for delay distributions. Each grid point is colored according to the

peak power of the burst onset times (i.e., smooth sequences in dark blue; synchronous sequences in yellow). White/black dots: locations of the twomodels in (A)

and (B). Black line: models to the left and below this line display sequences with synchronously active groups of neurons that are inconsistent with song-related

activity of HVC(RA) neurons (p < 0.05, bootstrap, see STAR Methods).

See also Figures S2, S3, and S4.
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synaptic inputs could be summated, can differ greatly within
specific cell classes, potentially influencing network function
(Giocomo and Hasselmo, 2008). To directly address this feature
in HVC, we reanalyzed a published dataset of intracellular re-
cordings performed during singing (Long et al., 2010; Vallentin
and Long, 2015). We found that temporal summation—defined
as the time course of the depolarization immediately preceding
a burst—was highly consistent across neurons (2.31 ±
0.37 ms, n = 11; Figures 4A–4C). We modified our network
models to explicitly reflect different degrees of temporal summa-
tion in HVC(RA) neurons by parametrically varying their passive
integrative properties (STAR Methods). These simulations sug-
gest that differences in temporal summation across neurons
cannot account for the smooth network sequences observed
(Figure 4D), further excluding a postsynaptic mechanism as a
significant source of network delay.
We then explored the alternative possibility that local connec-

tions between HVC(RA) neurons could exhibit delays related to
the time required for an action potential to travel from its initiation
site near the neuronal soma to axon terminals (i.e., axonal con-
duction delays). In previous work (Benezra et al., 2018), we
had found that HVC(RA) neurons often send extensive axonal col-
laterals throughout HVC, and we used 22 complete reconstruc-
tions to estimate the distance from the soma to each of the syn-
aptic sites along the axon, a log-normal distribution ranging from
0.19 to 1.34 mm (5th to 95th percentiles). To convert these path
length measurements into axonal delays, we needed to measure
the conduction velocity of local HVC(RA) axon collaterals, which
are thin and difficult to record. However, we could estimate these
values using in vivo whole-cell recordings (n = 40 HVC(RA) neu-
rons) to measure conduction velocity in antidromically activated
HVC / RA projection axons (Figures 5A and S5A; STAR
Methods), a path distance of 2.8 ± 0.2 mm (n = 4 neurons) (Fig-
ure 5B). We then corrected for differences in axon diameter (de-
scending axon: 446 ± 135 nm, local collaterals: 167 ± 73 nm) us-
ing cable theory (Rushton, 1951; Figures 5C, 5D, and S5B–S5D;
STAR Methods). Assuming homogeneous biophysical proper-
ties (i.e., channel density) across the axon, we arrived at a final
estimated conduction velocity of 0.187 ± 0.035 mm/ms, corre-

sponding to conduction delays ranging from 1 to 7.5 ms (5th

and 95th percentiles) (Figure 5E). Our network model demon-
strates that these values are sufficient to enable HVC to generate
smooth sequences (Figure 5F). Taken together, we find that
axonal conduction delays contribute significantly to network dy-
namics within HVC.

Axonal Conduction Delays Can Explain Song-Related
Spatial Activity Patterns within HVC
We have demonstrated that axonal conduction delays may have
the capacity to significantly impact the temporal structure of the
HVC network, potentially leading to continuous burst events
throughout song. We next asked whether the impact of axonal
delays can be detected in the spatial properties of HVC circuit
dynamics. Because synapses located closer to the soma are
activated after shorter delays than those further away (Figure 5E),
we reasoned that the spatial distribution of the synapses respon-
sible for driving the next step of the HVC sequence can provide
an independent test of the range of delays underlying HVC
network dynamics. To investigate this, we generated ‘‘spatial
models’’ for a variety of delay distributions, varying the mean
and SD values as in the above analysis (Figure 3G). For each
model, we placed ‘‘virtual synapses’’ at specific locations onto
22morphologically reconstructed HVC(RA) axon collaterals (Ben-
ezra et al., 2018) corresponding to the selected delay distribu-
tions given our estimate of conduction velocity. For instance, in
cases in which the conduction delays were long but exhibited
a low variance, synapses were clustered on distal axons (Figures
6A). We also considered cases in which the means of the con-
duction delays were low, across different variance conditions
(Figures 6B and 6C). We compare these possibilities against a
scenario in which the mean and variance were both relatively
high (Figure 6D), as we estimate for HVC delays. Because of
the differential placement of synapses within the axonal field,
each model should result in a different prediction concerning
the spatiotemporal pattern of activity (Graber et al., 2013;Marko-
witz et al., 2015; Peh et al., 2015) in HVC during singing (i.e., the
location of postsynaptic neurons that represent the next step
within the sequence).

Figure 4. Heterogeneity of Membrane Potential Rise Times Is Insufficient to Explain HVC Network Dynamics
(A) Membrane potential of an HVC(RA) neuron recorded intracellularly during three song trials. Arrow: burst onset time.

(B) Average membrane potential (in black) preceding burst onsets (shaded region in A) with exponential fit (t = 2.5 ms).

(C) Exponential fits to the membrane potential preceding bursts in 11 intracellularly recorded HVC(RA) neurons.

(D) Power spectral analysis for models with varying levels of heterogeneity in membrane potential rise times before burst onsets. Models to the left of the vertical

line produce network sequences with synchronous groups of neurons that are incompatible with HVC population recordings (p < 0.05, bootstrap, see STAR

Methods).
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To examine these song-related spatial patterns, we per-
formed 2-photon imaging of GCaMP6-expressing projection
neurons during singing. We combined new observations
with a previously published dataset (Katlowitz et al., 2018;
Picardo et al., 2016), totaling 182 putative HVC(RA) neurons
(Figure 6E; STAR Methods). Using established techniques
(Picardo et al., 2016; Pnevmatikakis et al., 2016), we precisely
estimated burst onset times with a temporal resolution of
!10 ms and related these values to the spatial position for
each neuron (Figure 6F). We then determined the relative loca-
tions and burst time differences of all neuron pairs (n = 5,842
pairs). We excluded all cases with a difference in burst times
greater than 20 ms (n = 5,582 pairs, 95.5%) and therefore un-
likely to be driven by monosynaptic connections. In the re-
maining 260 cases, sequentially active neuron pairs were
found over a wide range of relative locations (178 ± 102 mm,
mean ± SD), from immediately adjacent (!10 mm) to much
longer distances (!500 mm, or approximately one third of
the maximum extent of HVC) (Figures 6G and 6H). These func-
tional data were most similar to the simulation based on our
estimates of local HVC conduction values (Figures 6I and

S6). We extended our analysis to consider a wider range of
delay distributions and found a family of solutions whose pre-
dicted spatial patterns correlated significantly (r > 0.6, p <
0.05, two-sided t test) with our imaging data (Figure 6J).
Importantly, these independently observed solutions overlap-
ped both with the estimated axonal delays (Figure 5F) and the
range of models in which HVC forms smooth sequences (Fig-
ure 3G), consistent with asynchronous functional connectivity
between HVC(RA) neurons based on local axonal delays.

Delay Distributions Are Conserved from Songbird to
Mammalian Neocortex
We have demonstrated the impact of local axonal delays on the
timing and structure of network activity within HVC of the zebra
finch. Given the extraordinarily slow axonal conduction velocity
in HVC compared with known values measured in a variety of
different circuits (Figure 7A), it remains unclear whether such de-
lays will play a role within those networks or whether this solution
is simply a specialization within zebra finch HVC. We began to
examine this issue by analyzing the local collaterals of 14 spiny
neurons in layer 4 of rat somatosensory cortex (Figure 7B;

Figure 5. Local HVC(RA) Axonal Conduction Delays Support Smooth Sequences
(A) Antidromic responses (10 trials per neuron) following RA stimulation measured with in vivo whole-cell recordings from two HVC(RA) neurons allows precise

measurement of conduction times along the descending axon. Stimulus artifact removed for visualization.

(B) Example reconstruction of an HVC(RA) projection neuron (axons, red; dendrites, black).

(C) Light micrographs of local (top row) and descending (bottom row) axons from five HVC(RA) neurons labeled with neurobiotin.

(D) Top: 3D reconstruction of the soma and proximal axons of a retrogradely labeled HVC(RA) neuron from a serial block-face electron microscopy (EM) image

stack. Insets: EM micrographs of labeled axons. Bottom: distribution of unmyelinated local and descending HVC(RA) axon diameters.

(E) Estimate of the distribution of conduction delays along thin unmyelinated local axon collaterals of an HVC(RA) neuron (population inset).

(F) The distribution of conduction delays along HVC(RA) neuron axons falls within the range that generate continuous sequences in our network model (see

Figure 3G). Error bars: Standard deviation.

See also Figure S5.
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Figure 6. Spatial Organization of HVC Projection Neuron Activity during Singing Is Consistent with Network Dynamics Controlled by Axonal
Delays
(A–D) Left: locations of virtual active synapses along the local axonal collaterals of an HVC(RA) neuron for a given delay distribution (inset; mean ± SD, A: 4.5 ±

0.25ms; B: 0.5 ± 0.25ms; C: 0.5 ± 2.75ms; D: 3.3 ± 2.1ms). Right: distribution of virtual active synapses relative to the soma based on the local axonal collaterals

of 22 HVC(RA) neurons.

(E) 2-Photon calcium imaging of song-related bursting activity in HVC. Left: example image of GCaMP6s-labeled somata. Right: Spectrogram of songmotif (top),

aligned normalized fluorescence traces of the neuron highlighted in left panel (center), and estimated burst onset time (bottom).

(F) Left: soma locations of 18 neurons active within the same syllable, projected onto the horizontal plane. Right: estimated burst onset times of the same neurons

within the syllable.

(legend continued on next page)
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Narayanan et al., 2015). Whenwemeasured the path length from
the soma to different locations along the axon, we found that the
entire size of the axonal field was considerably larger than that of
HVC(RA) neurons (Figure 7C). Surprisingly, when we estimated
conduction delays—accounting for both the discrepancies in
conduction velocity and path length—we find that the range of
these values is identical in both cell classes (L4: 3.4 ± 2.3 ms,
HVC(RA): 3.3 ± 2.1 ms) (Figure 7D). Therefore, conduction delays
could potentially play an important computational role within a
broad range of neural circuits.

DISCUSSION

Using a combination of modeling and experimental ap-
proaches, we investigated how local excitatory circuits can
give rise to convergent synaptic input underlying sequential ac-
tivity in the zebra finch song system. We used silicon probes to
enable single-trial electrophysiological measurements of song-
related sequences within HVC, observations that support a
central role for slow and heterogeneous delays in HVC network
dynamics. We further demonstrate that these delays are likely
due to conduction properties of HVC axon collaterals, and we
show that this circuit feature may influence the spatiotemporal
patterns of HVC activity observed during singing. Taken
together, we have shown that axonal conduction velocity can
lead to a continuous distribution of premotor bursts, which fa-
cilitates the placement of descending motor commands at any
time point during the song. Furthermore, we estimate that con-
duction delays are significantly larger than those afforded by
other biophysical parameters. Approximately half of the total
elapsed time of the HVC sequence could be attributed to local
axonal conduction, a comparatively inflexible process that may
underlie the behavioral stereotypy inherent in the adult zebra
finch song (Lombardino and Nottebohm, 2000) by rendering
the circuit less sensitive to perturbations (Hamaguchi et al.,
2016; Swadlow et al., 1981).

Previous models of premotor sequence generation have
suggested that HVC feedforward networks (Galvis et al.,
2017; Long et al., 2010; Pehlevan et al., 2018) could be based
on a synfire chain architecture (Abeles, 1991; Amari, 1972;
Diesmann et al., 1999). In our study, we find that the synchro-
nous model—which is functionally equivalent to the synfire
chain configuration—makes predictions about network timing
that are inconsistent with our observations. Sufficiently het-
erogeneous delays change the regime of these feedforward
networks to smoothly evolving dynamics. The asynchronous
HVC model, strongly supported by our data, has fundamental

similarities with previously described ‘‘polychronous’’ net-
works, which are capable of generating almost arbitrary neural
sequences in the presence of a suitable range of delays (Izhi-
kevich, 2006). A salient feature of polychronous networks is
the potential to self-organize such connectivity patterns
through spike timing-dependent plasticity mechanisms
(Gerstner et al., 1996; Izhikevich, 2006), and future work will
determine the relevance of axonal delays for assembly of
HVC circuits during song learning (Fiete et al., 2010; Jun
and Jin, 2007; Okubo et al., 2015).
A potential limitation of ourmodel is its exclusive focus on local

excitatory connectivity within HVC (Kornfeld et al., 2017; Long
et al., 2010). The role of other circuit elements, such as local
inhibitory interneurons, in controlling song-related HVC(RA)

neuron activity also remains to be explored (Gibb et al., 2009;
Jin et al., 2007; Kosche et al., 2015; Markowitz et al., 2015; Yildiz
and Kiebel, 2011). Furthermore, in addition to local synapses
within HVC, premotor neurons also receive excitatory connec-
tions from other brain regions (Akutagawa and Konishi, 2010;
Nottebohm et al., 1982), and future studies will elucidate how
these external inputs contribute to song-related activity in
HVC. For example, inputs from the thalamic nucleus Uvaeformis
may be instrumental in initiating (Andalman et al., 2011; Danish
et al., 2017; Galvis et al., 2018) or maintaining (Hamaguchi
et al., 2016) HVC sequential activity.
The idea that axons contribute to information processing in

neural circuits has long been explored for long-range connec-
tions between different brain areas (Carr and Konishi, 1988; In-
nocenti et al., 1994; Salami et al., 2003; Sugihara et al., 1993).
For instance, in the brainstem of the barn owl, axons carrying
sound information from both ears form precisely tuned and
spatially organized ‘‘delay lines’’ (Jeffress, 1948) necessary for
detecting minute interaural time differences (Carr and Konishi,
1988). In contrast, the role of axonal delays within local micro-
circuits is often disregarded (Budd et al., 2010), possibly
because of the technical challenges involved in obtaining reli-
able estimates of conduction velocity in local circuits or
because of a tenuous relationship between brain activity and
behavior. In this study, we find that spatiotemporal patterns
within HVC appear to be strongly influenced by ‘‘local delay
lines.’’ We do not yet know whether this specialization is unique
to circuits in which a high degree of temporal precision is
required or whether it can be more broadly found in other net-
works, including those capable of more flexibility (Cohen et al.,
2020; Fujimoto et al., 2011). Although we find that conduction
delays along intracortical axons in a rodent neocortical area
are likely to be comparable to those reported here in zebra

(G) Relative soma locations of sequentially active neurons in (F) (i.e., burst onset times within 20 ms of each other). Each dot is the relative soma location of a

postsynaptic neuron and all presynaptic neurons are aligned at the origin.

(H) Relative soma locations of putatively connected neurons in 9 birds.

(I) Radial distribution of neurons in (H) (dashed line) and radial distribution of active synapses predicted by the four simulated distributions in (A)–(D) (solid lines).

(J) Correlation between the radial distribution of sequentially active neurons (H) and simulated locations of active synapses for delay distributions covering the

entire delay parameter space of network models (see Figure 3G). The region between the black lines contains delay distributions that are significantly correlated

with the measured distribution of sequentially active neurons (rR 0.603, two-sided t test: degrees of freedom = 9, tR 2.268, p% 0.05). Black cross: estimated

delays of HVC(RA) neurons (see Figure 5F). Delay distributions to the right and above of the white line result in smooth sequences, as observed in HVC(RA) neuron

population activity.

See also Figure S6.
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finch HVC, the extent to which these collaterals may support
persistent activity (Sachidhanandam et al., 2013) or some other
aspect of processing (Wilson et al., 2011) within this region so
far remains unexplored. Further work in other circuits can
establish whether this delay distribution represents a universal
scaling law (Buzsáki and Mizuseki, 2014; Liewald et al., 2014;
Miller, 1996) across different species, brain regions, cell types,
etc., or whether these local delays are specially tuned for the
requirements of each unique case. Overall, our results suggest
that in addition to defining the static architecture of neural net-
works (Denk et al., 2012; Plaza et al., 2014; Seung, 2012), func-
tional properties of axons within local circuits can also strongly
influence neural activity patterns.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAV9.Syn.GCaMP6s.WPRE.SV40 Chen et al., 2013 Addgene #100843

AAV9.CamKII0.4.Cre.SV40 James M. Wilson Addgene #105558

AAV9.CAG.Flex.GCaMP6f.WPRE.SV40 Chen et al., 2013 Addgene #100835

AAV9.CAG.Flex.GCaMP6s.WPRE.SV40 Chen et al., 2013 Addgene #100842

Chemicals, Peptides, and Recombinant Proteins

Biotinylated dextran (3,000 MW) Invitrogen D7135

Hydrogen peroxide solution (3%) Sigma-Aldrich CAS: 7722-84-1

DAB (3,30-Diaminobenzidine) Sigma-Aldrich CAS: 91-95-2

Osmium tetroxide solution (2%) Sigma-Aldrich CAS: 20816-12-0

Uranyl Acetate Electron Microscopy Sciences RT 22400

EMbed-812 Electron Microscopy Sciences RT 14120

Toluidine Blue Electron Microscopy Sciences RT 22050

Lead Citrate Electron Microscopy Sciences RT 22410

Critical Commercial Assays

Vectastain ABC Kit Vector Laboratories PK-4000

Experimental Models: Organisms/Strains

Zebra finch (Taeniopygia guttata) Magnolia Bird Farm, Anaheim, CA N/A

Software and Algorithms

ImageJ NIH https://imagej.nih.gov/ij

MATLAB MathWorks https://www.mathworks.com/products/

matlab.html

Markov Chain Monte Carlo deconvolution Picardo et al., 2016 https://www.sciencedirect.com/science/

article/pii/S0896627316001094?via%

3Dihub

RPvdsEx Tucker-Davis Technologies http://www.tdt.com/components/

software/

ScanImage Vidrio Technologies ScanImage 4.2 (2015)

KiloSort spike sorting software Pachitariu et al., 2016 https://github.com/cortex-lab/KiloSort

HVC network model This paper https://psu.box.com/s/

55gh5tjgpvcxikel4wjfkzxdwyc0s7x4

Other

Intracellular recording amplifier Molecular Devices Axoclamp 700-B

Digital acquisition board Molecular Devices Digidata 1550

High-density silicon probe (with integrated

headstage)

Diagnostic Biochips 128-5 integrated

Chronic microdrive Neuronexus dDrive-xL

Assisted Fiber-optic & Electric Rotary Joint Doric Lenses AHRJ-OE_FC_AD_12_HARW

Omnetics cable adaptor Doric Lenses ADAPTER_HO12

Acquisition board Intan Technologies RHD Recording Controller (512 channels)

Stimulus generator A-M Systems Model 2100

Omnidirectional microphone Audio-Technica AT803

Audio amplifier Presonus Studio Channel

Digital signal processor Tucker-Davis Technologies RX8

(Continued on next page)
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Michael
Long (mlong@med.nyu.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The datasets generated during this study are available upon request from the Lead Contact. Source code and documentation
required for setting up and running simulations of the network models can be downloaded from: https://psu.box.com/s/
55gh5tjgpvcxikel4wjfkzxdwyc0s7x4.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used adult (> 90 days posthatch) male zebra finches (Taeniopygia guttata) that were obtained from an outside breeder and main-
tained in a temperature- and humidity-controlled environment with a 12/12 hr light/dark schedule. All animal maintenance and exper-
imental procedures were performed according to the guidelines established by the Institutional Animal Care and Use Committee at
the New York University Langone Medical Center.

METHOD DETAILS

Surgeries
Surgical procedures for retrograde labeling of HVC(RA) neurons, viral injections, chronic cranial window implantation for 2-photon im-
aging, intracellular microelectrode recordings, and in vivo whole-cell recordings have previously been described in detail (Kornfeld
et al., 2017; Long et al., 2010; Picardo et al., 2016). For extracellular recordings, high-density silicon probes (128 channels; Diagnostic
Biochips) were mounted to a microdrive (NeuroNexus), and a stainless steel ground wire (0.001,’’ California FineWires) was soldered
to the reference of the headstage, whichwas held in place by a custom 3Dprinted enclosure (Formlabs). A craniotomy (!1mm length
x 100 mm width) was made over HVC (2.3 mm lateral / 0.25 mm anterior of the bifurcation of the sagittal sinus). Silicon probes were
implanted at a depth of !500-800 mm in HVC. Silicon elastomer (Kwik Cast, WPI) was applied to the craniotomy and dental acrylic
was used to secure the microdrive and the enclosure for the headstage in place. For antidromic activation of HVC(RA) neurons, a bi-
polar stimulation electrode was implanted into RA.

Silicon probe recordings of HVC activity during song
Neural activity of freely moving birds was recorded using an electrically assisted commutator (Doric Lenses) and the RHDUSB Inter-
face Board or RHD Recording Controller (Intan Technologies). Vocalizations were recorded using an omnidirectional microphone
(Audio-Technica) and a preamplifier (Presonus). Antidromic stimulation was applied using biphasic current pulses of 20 ms duration
and amplitudes between 20-500 mA. To help characterize cell types (Figure S1), we also reanalyzed a previously reported dataset of
identified HVC neurons (Lynch et al., 2016; Okubo et al., 2015).

Identification of HVC projection neurons in silicon probe recordings
Spike detection and clustering was performed using KiloSort software (Pachitariu et al., 2016) andmanual post-processing (merging/
splitting of clusters) was performed using phy (Rossant et al., 2016). Spike times of all clusters were aligned to onsets and offsets of
songmotifs. Reliable burst events acrossmotifs that are characteristic of HVC projection neuron activity (Hahnloser et al., 2002; Koz-

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Resonant scanner Thorlabs N/A

Movable Objective Microscope Sutter Instrument Company N/A

16x water immersion objective Nikon MRP-07220

Transmission electron microscope FEI Philips CM-12

Digital camera for electron microscopy (4k

x 2.7k)

Gatan Inc. N/A

Brightfield microscope Zeiss AxioObserver Inverted
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hevnikov and Fee, 2007) were readily apparent. Clusters lacking these events were not considered any further. The remaining clus-
ters often exhibited more than one burst event and non-zero spontaneous spiking activity (defined as spiking in 5-minute windows
before and after each song bout). To determine whether multiple bursts and/or spontaneous activity (if present) in one cluster were
likely to originate from the same or multiple, erroneously combined units, we compared the waveforms and amplitude distribution of
spontaneous spikes to those of the first spike from each bursting event across multiple channels. Specifically, we only considered
bursts and/or spontaneous activity to originate from different units if they differed in both waveform and amplitude distribution. Here,
amplitude similarity between the first spikes in bursts and/or spontaneous activity was measured by determining the amplitude (i.e.,
difference between maximum and minimum of the spike waveform) on each electrode, normalizing these values to the maximum
amplitude across channels and computing the mean amplitude distribution for all first spikes in a burst/spontaneous spikes. We
then determined the 8 electrodes with the largest mean amplitudes and computed the inner product of the normalized amplitude
distribution on these electrodes for all pairwise combinations of first spikes of the same burst event/spontaneous spikes (i.e., gener-
ating a null distribution for each burst event/spontaneous activity). We next repeated the calculation of this inner product between all
pairwise combinations of first spikes of different burst events/spontaneous spikes and determined whether these distributions were
different from the null distributions. After identifying bursting units in this way, we computed their spontaneous activity. Single-
bursting units were classified as HVC(RA) neurons if their spontaneous activity was less than the lowest spontaneous firing rates of
HVC(X) neurons (antidromically identified previously (Lynch et al., 2016; Okubo et al., 2015) (Figures S1B and S1C).

Alignment of neural sequences
First, we determined a reference song motif to which neural sequences in all other motifs were aligned. We chose the motif with a
duration closest to the mean motif duration (motif m). For alignment of sequences in individual syllables, we first determined during
which (if any) syllable individual bursts occurred. Sequences in individual syllables were aligned independently of sequences in other
syllables in the following way: For each motif n, we created a vector tn of all burst onset times throughout the motif. We then fitted an
affine transformation t0n = anmtn +bnm minimizing the squared difference between aligned burst times in trial n and the reference trialm
ðt0n " tmÞT ðt0n " tmÞ. Burst timing jitter was defined as the root mean squared error of aligned burst times across motifs. Sequences of
HVC(RA) and HVC(X) bursts were aligned separately. We only performed this alignment for syllables which contained at least three
bursts.

Histological procedures
For serial block-face electron microscopic (SBEM) imaging, perfusion and histology was performed as described in detail previously
(Kornfeld et al., 2017). For transmission electron-microscopic imaging, the protocol used for SBEM imaging was slightly modified as
follows. After the bird was transcardially perfused, the brain was removed from the skull and post-fixed overnight (Kornfeld et al.,
2017). The brain was then cut into 100 mm thick slices using a vibratome (Leica VT1000S). Residual peroxidase activity was sup-
pressed by soaking the sample in 3% H2O2 for 20 min before labeling the sample with an avidin-peroxidase complex and DAB. A
slice containing clearly visible stained fibers from HVC to RA was unmounted by immersing the microscope slide into PB. After
washing with PB, the samples were post fixed in 1% OsO4 for 2 hours, block stained with 1% uranyl acetate for 1 hour, dehydrated
in ethanol and embedded in EMbed 812 (Electron Microscopy Sciences, Hatfield, PA). Semi-thin sections were cut at 1 mm and
stained with 1% toluidine blue to find the previously identified area of interest containing fibers from HVC to RA. In each sample,
20 serial ultrathin sections with 100 nm thickness were cut, mounted on slot copper grids, and stained with uranyl acetate and
lead citrate.

Transmission-electron microscope imaging
Stained grids were examined under a Philips CM-12 electronmicroscope (FEI; Eindhoven, the Netherlands) and photographed with a
Gatan (4k x 2.7k) digital camera (Gatan, Inc., Pleasanton, CA). Samples were imaged at a series of increasing magnifications (i.e.,
ranging from 3,400x to 66,000x magnification) to allow identification of fiber tracts and ultimately individual fibers within these tracts.
Diameter measurements of unmyelinated projection axons were made on images with a magnification of at least 40,000x.

Axon diameter measurements
All light micrographs used for illustration of local and descending axons were captured using a Zeiss AxioObserver Inverted. We ac-
quired images of descending HVC(RA) neuron axons from ultrathin sections using a transmission electron microscope (see above).
Unmyelinated descending axons were identified based on dark DAB labeling in EM micrographs. Myelinated axons were identified
morphologically by presence of multiple, closely wrapped membrane layers (i.e., myelin sheaths; Figures S5B and S5C). Diameters
were measured along the shortest axis of the circumference of each axon (i.e., axons are roughly cylindrical, and this corresponds to
the diameter of the cylinder irrespective of sectioning angle) (Figure S5D). Diameters of local HVC(RA) neuron collaterals were
measured using a previously reported dataset acquired using serial block-face EM (Kornfeld et al., 2017) with a voxel size of 11 3
11 3 29 nm3 containing HVC(RA) neurons labeled by injection of a tracer (BDA-dextran) into RA. Diameters of randomly selected lo-
cations along labeled local axon collaterals were measured by determining the image plane that was closest to the orthogonal plane
defined by the axon and measuring the axon diameter in that plane.
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Estimating axonal conduction delays
Conduction delays along local HVC(RA) neuron axons were obtained by measuring the pathlength from the soma to points along the
axon spaced at the mean inter-bouton interval of HVC(RA) neuron axons (10.5 mm) (Kornfeld et al., 2017). Combining these measure-
ments from 22 reconstructions of premotor neuron axons reported previously (Benezra et al., 2018) resulted in an average distribution
of pathlengths. We then converted these pathlengths into a conduction delay distribution by multiplying each pathlength distance
with the conduction velocity of long-range axons. A log-normal distribution described the shape of the conduction delay distribution
well (least-squares fit R2 = 0.9988). We therefore used mean and standard deviation of a log-normal distribution to parameterize the
conduction delays for the network models (Figures 1E, 1F, and 3).

Conduction delays along L4 spiny neuron axons were estimated in the same way. We measured the distribution of pathlength dis-
tances of 14 complete reconstructions of the intracortical axonal arbor of L4 neurons labeled in vivo (Narayanan et al., 2015) and
multiplied pathlengths by a conduction velocity of 0.3 mm/ms (Hirsch and Gilbert, 1991; Shu et al., 2007) to obtain the conduction
delay distribution.

The conduction time along long-range axons from HVC to RA was measured from whole-cell membrane potential recordings of
HVC(RA) neurons as the difference between the onset time of antidromic stimulation in RA and action potential onset. The action po-
tential onset was defined by calculating the second derivative of the membrane potential between 0-20 ms after stimulation and
determining the first upward threshold crossing, where the threshold was set as the minimum of either 3 standard deviations of
the second derivative or 400mV/ms2. To determine the threshold between groups of conduction delays, we used k-means clustering
with two groups. The pathlength of the long-range axon of HVC(RA) neurons wasmeasured from the soma to the first bifurcation of the
axon as it entered RA. The average conduction velocity of unmyelinated descending axons was calculated by dividing the average
descending pathlength by the average conduction time of the secondmode of the conduction time distribution (Figure S5A). We then
used a simple biophysical model relating the diameter of unmyelinated axons to conduction velocity (Hodgkin and Huxley, 1952;
Rushton, 1951):

u = c
ffiffiffi
d

p

Here, u is the conduction velocity, d the axon diameter, and c a constant. We determined c using the average conduction velocity and
average diameter of putative unmyelinated descending axons and assumed that this constant is the same for unmyelinated local
axons of HVC(RA) neurons (i.e., that the basic biophysical properties underlying action potential propagation are the same). We
then calculated a distribution of conduction velocities given the observed distribution of diameters of local axonal projections. To
estimate the distribution of conduction times to synapses onto other HVC(RA) neurons, we used a Monte Carlo simulation approach.
We stepped through all possible synapse locations along the set of reconstructed axon morphologies of HVC(RA) neurons. For each
possible location, we calculated the distribution of conduction times to that location given the pathlength to the soma and the esti-
mated distribution of local conduction velocities. We then randomly selected one of the possible conduction times and assigned it as
a synapse onto other HVC(RA) neurons based on EM measurements of premotor synapse density for each location relative to the
soma (Kornfeld et al., 2017). We ran 100 Monte Carlo simulations to obtain a robust estimate of the resulting conduction time distri-
bution to other HVC(RA) neurons.

Simulating synapse locations along axons
Synapse locations along HVC(RA) neuron axons for a given delay mean and SD were simulated as follows. Points along the recon-
structed axon were grouped according to their pathlength distance to the soma into 50 mm bins. If successive points in the recon-
struction had an interval of more than 1 mm, additional points were inserted at 0.5 mm intervals using linear interpolation (i.e., leaving
the pathlength unchanged). Next, the log-normal delay distribution with given mean and SD was converted to a pathlength distribu-
tion by multiplication with the axonal conduction velocity of local HVC(RA) neuron axons (i.e., 0.187 mm/ms). For each neuron, we
generated NSyn * LNeuron / LAvg samples from this log-normal distribution. Here, NSyn = 170 is the average number of synapses
made by eachHVC(RA) neuron onto other premotor neurons (Kornfeld et al., 2017), LNeuron is the total axonal pathlength of this specific
premotor neuron and LAvg is the average axonal pathlength across all 22 premotor neurons (Benezra et al., 2018). Samples beyond
themaximumpathlength distance of an axon to the somawere repeated. A histogram of these pathlength samples with a bin width of
50 mm was computed. For each 50 mm bin, points along the reconstruction in the corresponding pathlength bin were randomly
sampled until the number of elements in this bin of the histogram was reached and a synapse was placed at the location of the
sampled points along the reconstruction. For comparison with calcium imaging data, simulated synapse locations were aligned
by centering each reconstruction at the soma location, projecting onto the horizontal plane, andmeasuring their distance to the origin
(Figure 6I).

Sensitivity analysis of detection of localized activity patterns
Our ability to detect spatially localized patterns of sequentially active neurons (Figures 6A–6C) can be compromised by the presence
of unconnected neurons that are active at a similar time by chance. To obtain an estimate of the fraction of active neurons that have to
be connected in order to detect spatially localized patterns, we simulated the expected spatial distribution of a combination of con-
nected and unconnected neurons. For each localized pattern of connected neurons (Figures S6A–S6C, top), we computed the spatial
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distribution of sequentially active neurons as described above. We refer to this distribution as ‘100% connected’ (Figures S6A–S6C,
bottom). Next, we determined the possible locations of unconnected neurons by analyzing all pairs of sequentially active neurons that
have a burst time difference of more than 20 ms (we refer to this distribution as ‘unconnected’). We then simulated the spatial dis-
tribution expected in the presence of X% connected and (100 – X)% unconnected neurons by sampling from these ‘100% con-
nected’ and ‘unconnected’ distributions in the respective proportions and generating a combined distribution (Figures S6A–S6C,
bottom). We used a two-sided two-sample KS-test to test whether this combined distribution was significantly different from the
observed distribution (p values in Figures S6A–S6C, bottom).

Estimating postsynaptic integration times
We reexamined two previously reported datasets (Long et al., 2010; Vallentin and Long, 2015) of intracellular recordings of HVC(RA)

neurons during singing. For each neuron, we aligned burst onsets in different songmotifs (defined as the peak of the 2nd derivative of
themembrane potential) and calculated themeanmembrane potential (Figure 4).We then fitted an exponential function a * exp(b * t) +
c to the membrane potential in the time windows [-10, "5] ms and [-2, "0.1] ms before burst onset (Figures 4B and 4C) and defined
the rise time as tRise = 1 / b. To determine the rise time in model HVC(RA) neurons, we simulated 50 trials in each network model, re-
corded the membrane potential at the soma in 1,000 randomly selected model neurons and determined burst onset times, average
membrane potential and rise time for each neuron as described for intracellular recordings.

Frequency analysis of burst onset times
For each bird in the electrophysiology dataset, we determined all syllable lengths and number of bursts occurring during each syl-
lable. In our modeling effort (see Figures 3A and 3B), we simulated possible burst times by sampling random numbers distributed in
time according to the burst density of the model, while preserving the distribution of syllable lengths from the experimental datasets
and the number of bursts observed during each syllable. For each syllable, we then defined the power spectral density Ps of the burst
times as the absolute magnitude squared of the discrete Fourier transform evaluated at frequencies f between 1 and 200 Hz, in in-
crements of 2 Hz:

PsðfÞ =

"""""
Xn

j = 1

expð2piftjÞ

"""""

2

Here, n is the number of bursts in the syllable, and tj the burst onset time of the jth burst. We then calculated themean power spectrum
across all syllables. In order to obtain a reliable estimate of the predicted power spectrum of each model and its uncertainty, we
repeated this procedure 10,000 times. We determined the mean power (Pmean) in a window (±4 Hz) around the peak in the power
spectrum between 75-200 Hz for each bootstrap simulation and Pmean of the observed burst times. We calculated the percentile
of the observed Pmean relative to the distribution of simulated Pmean values and defined this as the p value of the model power spec-
trum. We visually inspected all power spectra to ensure that the frequency corresponding to the intervals in synchronous network
models – and not sub- or higher harmonics – was selected.

Neuron and synapse models
HVC(RA) neurons were modeled as a two-compartment model with a dendritic and somatic compartment (Long et al., 2010). Current
injection at the soma triggers sodium channel-dependent action potentials, while current injection (and synaptic input) to the dendrite
compartment triggers an all-or-none calcium spike, which in turn triggers a high-frequency burst of four action potentials at the soma.
Ion channels weremodeled using the Hodgkin-Huxley formalism. All model parameters are identical to our previous work (Long et al.,
2010), except for the following adjustments made to match the rise time prior to burst onset with intracellular recordings during
singing: Rc = 130 MU, Gs,L = 0.05 mS/cm2, tc = 15 ms. Conductance-based excitatory synapses were modeled according to
‘kick-and-decay’ dynamics. Upon synaptic release, the synaptic conductance was increased by Gsyn, followed by an exponential
decay with time constant tsyn = 5 ms. The weight Gsyn of individual synapses was drawn from a uniform distribution [0, Gmax],
with Gmax set to 0.05 mS/cm2, a value that leads to a unitary EPSP of !4 mV at the soma (i.e., the average EPSP amplitude is
2 mV) (Mooney and Prather, 2005).

Network assembly
The feedforward HVC networkmodel was assembled in an iterative process. The algorithmwas designed to enforce synchrony of the
synaptic inputs to the postsynaptic neurons. The timing of presynaptic bursts must be such that the spikes arrive at the postsynaptic
neuron within a narrow time window (discussed below), considering the different burst transmission delays (Figure 1). The number of
connections that each neuron can receive was limited to 170, based on previous ultrastructural observations (Kornfeld et al., 2017).
Each iteration consisted of three steps (Figure S2A): (i) simulation of network dynamics to determine the burst onset times of all

neurons in the network at the current iteration; (ii) adding feedforward connections constrained by a given delay distribution between
‘source neurons’ (i.e., presynaptic neurons) and ‘target neurons’ (i.e., potential postsynaptic targets which do not form outgoing con-
nections in the current iteration); (iii) adding additional neurons into the network. As a result, the feedforward network grows and the
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corresponding population sequence in duration during this iterative process (Figure S2B). In step (i) of each iteration, network dy-
namics were simulated by activating a set of 200 predefined ‘starter neurons’ and recording burst onset times of all active neurons
in the network. In step (ii), new feedforward synaptic connections between ‘source’ and ‘target neurons’ were added. First, Nnew neu-
rons were moved from the set of ‘target neurons’ in the previous iteration to the set of ‘source neurons’. Specifically, these were the
‘target neurons’ whose simulated burst onset times were within a 2 ms window from the earliest simulated burst onset time of all
‘target neurons’ (Figure S2C). We then generated a ‘synaptic pool’ (i.e., a set of delays d) of size Nout * Nnew (Nout = 170) by sampling
from the given distribution of delays.We iterated over all ‘target neurons’ ordered according to the number of synaptic inputs, starting
with the smallest number. For each ‘target neuron’, we randomly selected a ‘source neuron’ that fulfilled the synchrony requirement |
ttarget – tint – d – tsource |% tsync using a suitable delay d from the ‘synaptic pool’ (Figure S2C; i.e., requiring that all synaptic inputs to the
‘target neuron’ arrive within a synchronous time window 2*tsync (here: time window of 1 ms). tsource is the burst onset time of the
‘source neuron’, tint is the average integration time constant of HVC(RA) neurons from onset of the synaptic inputs to burst threshold
(!5 ms) (Long et al., 2010), and ttarget is the burst onset time of the ‘target neuron’. If there were multiple d allowing a connection be-
tween the ‘source neuron’ and the ‘target neuron’, the oneminimizing the quantity | ttarget – tint – d – tsource | was selected (i.e., only one
synapse was placed between a pair of ‘source’ and ‘target neurons’). After placement, this synaptic connection was removed from
the ‘synaptic pool’. If the number of synaptic inputs to the ‘target neuron’ reached 170 or no connection from the ‘source neurons’
could be made given the delays in the ‘synaptic pool’, it was not considered as a ‘target neuron’ anymore. In step (iii), neurons were
added to the network in order to increase the network from the set of starter neurons to its final size. This step was taken in case there
were no more ‘target neurons’ before the ‘synaptic pool’ was exhausted. In this case, the set of ‘target neurons’ was restored to its
state at the beginning of the iteration. A new ‘target neuron’ (i.e., without any existing incoming or outgoing synaptic connections) was
added to the network by placing a synaptic connection with a randomly selected delay d from the ‘synaptic pool’ originating from one
of the Nnew ‘source neurons’ added to the network in this iteration. The putative burst onset time of the new ‘target neuron’ was
defined as: tnew = tsource + d + tint. All other synaptic connections placed in this iteration were removed from the network; the asso-
ciated delays weremoved back into the ‘synaptic pool’; and steps (ii) and (iii)were repeated until the ‘synaptic pool’ was empty. Then,
the next iteration was started, and this process repeated until all 20,000 HVC(RA) neurons were incorporated into the network. To
investigate the effect of the statistics of delays on sequence generation, we used different delay distributions during network assem-
bly. The delay distributions in the completely assembled networks matched the target distributions (Figure S2D).

To generate network models using postsynaptic delays (Figure 4), we set all delays d equal to zero and the synchronous time win-
dow during which inputs could arrive to individual neurons (2*tsync) to 8ms. Integration times of postsynaptic neuronswere controlled
by varying the membrane capacitance of the dendritic compartment. Heterogeneity in the population was created by drawing the
membrane capacitance for individual neurons from a log-normal distribution truncated below at 1 mF/cm2. Parameters of the log-
normal distribution were determined such that at a minimum standard deviation the mean membrane potential rise times matched
intracellular recordings. Then the SD of the log-normal distribution was increased while keeping the other parameters fixed
(Figure 4D).

To generate network models with different degrees of feedforward (FF) and recurrent synaptic connections, we used a network
model with delays similar to those observed in HVC (Figure 5F). A fraction of synapses from each neuron was randomly selected
to remain as FF synapses and the remaining synapses were connected to other randomly selected neurons in the network model.

Simulations
During simulations, HVC(RA) neurons received additional independent white noise input currents to their somatic and dendritic com-
partments with zero mean and amplitudes Asoma = 0.1nA and Adendrite = 0.2nA, leading to fluctuations of the somatic membrane po-
tential with a standard deviation of 4.2 mV (Long et al., 2010). To account for the white noise currents, the HVC(RA) neuron models
were treated as a system of stochastic differential equations and solved using the AN3D1 weak 3rd order method (Debrabant,
2010). The simulation time step was set to 0.01 ms.

Each simulation was started by activating the set of 200 ‘starter neurons’ using an excitatory conductance kick with amplitude
300 nS exponential decay with time constant 5 ms (i.e., simulating synchronous synaptic input). This input was delivered to the
‘starter neurons’ either synchronously, uniformly distributed over a 7 ms window, or randomly within a 10 ms window. In order to
minimize transient effects of this activation procedure, the first 50 ms of simulated activity were discarded. Network activity patterns
after this transient period were qualitatively similar between the different activation procedures. To generate burst densities, we ran
50 simulations, recorded the burst onset time of each neuron (i.e., the time where the membrane potential at the soma crosses 0 mV
for the first time during a burst) and calculated the average number of bursts in 0.75 ms bins.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details of experiments can be found in figure legends and the Results section, including the statistical tests used, exact
value of n and what n represents (e.g., number of animals, number of cells, etc.). Values are reported asmean ± SD unless mentioned
otherwise, and values are plotted asmeanwith error bars representing SD unlessmentioned otherwise. Significance was defined at a
level of 0.05. Normal distribution of data was not assumed. No data were excluded from analysis. Statistical calculations were per-
formed using MATLAB R2016a.
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Supplemental Figures

Figure S1. Identification of Projection Neurons in High-Density Silicon Probe Recordings, Related to Figure 1
(A) Top: Waveforms of an HVC(RA) neuron in response to antidromic stimulation. Bottom: Distribution of antidromic spike latencies of the same neuron. (B)

Distribution of spontaneous firing rates of 206 antidromically identified basal ganglia projecting [HVC(X)] neurons recorded using single electrodes from previously

published datasets. (C) Distribution of spontaneous firing rates of 211 single-bursting units from 5 birds recorded from our silicon probe dataset. The dashed line

separates putative HVC(RA) (n = 89) and HVC(X) neurons (n = 112). (D, E). Distribution of spontaneous firing rates of double (n = 65) andR 3-bursting (n = 25) units.

(F) Burst onset times of all putative HVC(RA) single-bursting units. Colors correspond to Figure 1B.
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Figure S2. Network Model of HVC(RA) Neurons, Related to Figures 1 and 3
(A) Algorithm for feedforward network assembly. (B) During each iteration, neurons are added to the network such that they are active at the end of the current

network sequence. (C) Step (i): In each iteration, the sets of source and target neurons are updated according to simulated burst onset times in the current state of

the network. Step (ii): Illustration of synapse placement based on synchronous activation of synapses at the postsynaptic neuron. Step (iii): Illustration of

placement of synapses onto neurons newly added into the network. (C). Top: Observed delay distribution and log-normal fit. Center, bottom:Mean and SD of the

delay distributions in assembled networks match the parameters of the input log-normal distributions. Dashed: identity line.
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Figure S3. Power Spectra of Individual Birds, Related to Figure 3
A comparison of the predicted power spectra in the synchronous model (in blue) and the power spectra from HVC projection neurons recorded from each bird

(in black).
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Figure S4. Robustness of Network Model Design, Related to Figure 3
(A) Top: Network model including feedforward (FF, arriving synchronously with other synaptic inputs at postsynaptic neurons) and recurrent (Rec., connecting

independently and randomly to other neurons in the network) connections. Bottom: Jitter of burst onset times in network sequences with different fraction of FF

synapses. Fraction of recurrent synapses: 100% - fraction of FF synapses. Our network model operates with low jitter in the presence of up to 65% recurrent

connections, but networks with FF fraction of less than 35% could not sustain sequences. Shaded region represents jitter observed in HVC ensembles during

singing (see Figure 2). (B) Left: Simulated membrane potential of an example neuron from the network with FF fraction of 35%. Recurrent excitatory connections

can give rise to the repeatable subthreshold events observed during singing. (C) A uniform delay distribution (mean: 3.5 ms, SD: 1.75 ms) can give rise to smooth

network sequences.

ll
Article



Figure S5. Axonal Conduction Delay and Diameter Measurements along Myelinated and Unmyelinated HVC(RA) Long-Range Axons, Related
to Figure 5
(A) Conduction delay measurements along the HVC/RA projection axon for 40 neurons. Groupmembership was defined based on k-means clustering with two

groups (group I: fast, putatively myelinated axons; group II: slow, putatively unmyelinated axons). (B) Identification of myelinated (orange) and unmyelinated (blue)

axons in the HVC/RA fiber tract using transmission electronmicroscopy. (C) DAB stain enters the axons at nodes of Ranvier (blue), but not at myelinated parts of

the axon (orange), leaving myelinated segments unlabeled. (D) Diameters of labeled axons in EM images.
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Figure S6. Detecting Localized Patterns in the Presence of Background Activity, Related to Figure 6
(A-C) Top: Simulated distributions of sequentially active postsynaptic neurons predicted by different delay distributions that result in synchronous sequences (see

Figures 6A–6C). Bottom: Comparison of the simulated distribution of sequentially active neurons in the presence of different amounts of connected neurons (see

STAR Methods) with the observed distribution (see Figure 6I).
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